
On the Design of an Educational Infrastructure for the
Blind and Visually Impaired in Computer Science

Andreas Stefik
Department of Computer

Science
Southern Illinois University

Edwardsville
Edwardsville, IL 62026-1656

stefika@gmail.com

Christopher Hundhausen
School of Electrical

Engineering and Computer
Science

Washington State University
Pullman, WA 99164-2752
hundhaus@wsu.edu

Derrick Smith
Department of Education
University of Alabama in

Huntsville
Huntsville, AL 35899

derrick.smith@uah.edu

ABSTRACT
The blind and visually impaired community is significantly
underrepresented in computer science. Students who wish
to enter the discipline must overcome significant technolog-
ical and educational barriers to succeed. In an attempt to
help this population, we are engaged in a three-year research
project to build an educational infrastructure for blind and
visually impaired middle and high school students. Our pri-
mary research goal is to begin forging a multi-sensory educa-
tional infrastructure for the blind across the United States.
We present here two preliminary results from this research:
1) a new auditory programming environment called Sod-
beans, a programming language called Hop, and a multi-
sensory (sound and touch) curriculum, and 2) an empirical
study of our first summer workshop with the blind students.
Results show that students reported a significant increase in
programming self-efficacy after participating in our camp.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education];
K.4.2 [Social Issues]: Assistive Technologies for persons
with disabilities

General Terms
Design, Human Factors, Experimentation

Keywords
Accessibility, Visual Impairments, Auditory Debugging, As-
sistive Technology

1. INTRODUCTION
Blind and visually impaired students have few pathways

for entering the computing profession. Successful students
and professionals in this community are predominately self

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’11, March 9–12, 2011, Dallas, Texas, USA.
Copyright 2011 ACM 978-1-4503-0500-6/11/03 ...$10.00.

taught and have often overcome significant technical and
practical barriers. While much work has been dedicated to
helping the blind use various computer technologies, more
research is needed on finding ways to make it easier for blind
users to obtain high-paying and meaningful careers. While
computing is potentially appealing as a career option due to
its rich sound and tactile facilities, no standardized educa-
tional infrastructure exists to help these students succeed.
Indeed, with 61% of working adults (aged 16 to 64) with vi-
sion loss out of the work force [1], and with households that
include a blind member having a significantly higher rate of
poverty [16], creating more opportunities for this group of
individuals is sorely needed.

Our research attempts to address a broad research chal-
lenge: to build a multi-sensory educational infrastructure for
the blind and visually impaired across the United States,
and to broaden participation from this community in the
computing discipline. This is particularly challenging for at
least two reasons. First, modern programming environments
prove to be quite inaccessibile to the the blind and visually
impaired. For example, when the screen reader JAWS R© 11
is coupled with Visual Studio R© 2010, no sound is generated
when the user switches between tabs; a graphical window
appears, but JAWS R©does not speak. Further, the debug-
ger in Visual Studio R©outputs only the key pressed while
stepping into or over (e.g., “F11, F11, F11, F11.”). To ad-
dress this problem, we have collaborated with developers
at Oracle to develop Sodbeans, a computer programming
environment built into NetBeans 6.9. Sodbeans includes a
custom designed screen reader, a talking debugger (e.g., “a
to 5”), and a custom programming language called Hop. El-
ements of our tools have been iteratively refined in formal
empirical studies for nearly five years [15]. Second, exist-
ing programming curricula were not written with the blind
and visually impaired in mind, relying heavily upon visual
representations to teach key concepts. In contrast, we have
opted to build a curriculum tailored to this population’s
unique needs. As is commonly done in schools for the blind
and visually impaired, we have developed learning activities
that make extensive use of tactile manipulative objects to
teach computing concepts.

This paper presents two primary contributions toward the
broad challenge of building an educational infrastructure for
the blind and visually impaired. First, we introduce a new
auditory programming environment called Sodbeans, a pro-
gramming language called Hop, and multi-sensory (sound

and touch) curriculum that will be used at five schools for
the blind over the next three years. Second, we present
the results of an empirical study of our first summer pro-
gramming camp, which introduced computer programming
to blind high school students over a three-day period. Re-
sults from this preliminary study show that students re-
ported a significant increase in programming self-efficacy
through participating in the camp. Our research project
constitutes the first large-scale attempt to develop an edu-
cational pipeline specifically designed for blind and visually
impaired users to enter the computing discipline.

The remainder of this paper is organized as follows. We
begin with related work in Section 2 and discuss our edu-
cational infrastructure in more detail in Section 3. After
presenting an empirical study of our first workshop in Sec-
tion 4, we present our summary and future work.

2. RELATED WORK
While there is a rich legacy of work in auditory display

(using sound to convey information), and an extensive liter-
ature regarding how to make programming easier for novices,
there is relatively little work on programming blind or with
audio. In this section, we present related research on the
following topics: 1) programming blind, 2) auditory display,
and 3) novice and end-user programming. Perhaps the most
well known work on programming blind was conducted by
Smith et al. [13]. In this work, Smith noticed that blind
students tended to have difficulty in courses like data struc-
tures, which often rely extensively on visual representations.
Moreover, this work provided some pertinent observations
on how blind students program. Notably, Smith coined the
“Where am I?” problem, the idea that when programming
blind, the need to determine one’s location (e.g., in an edi-
tor, during an execution, general context of use), is crucial.

More recently, Bigham et al. used instant messaging chat-
bots to inspire blind individuals to enter computer science
as part of the National Federation for the Blind’s Youth
Slam program [3]. Students used off-the-shelf-technologies
(The JAWS screen reader and TextPad 4.73), which works
well for basic text editing. In contrast, while our tools are
compatible with JAWS and other screen readers, we have
built our own programming language, compiler, debugger,
and supporting auditory technologies, which aurally narrate
programming sessions. Our tools are publicly available on
sourceforge.net (search for Sodbeans).

Sánchez and Flores [12] created a custom programming
language called APL (auditory programming language), which
was designed for the blind. APL was tested with the blind
population, but supplied a limited set of commands for a
blind person to use, making it difficult to scale such tools to
a general programming curriculum such as the one we are
developing. Since our tools are based on NetBeans, students
have a rich set of programming environments and tools they
can use in our program (e.g., Java, PHP, Ruby), although
our talking debugger is only available for our language: Hop.

The use of auditory technologies in programming is not
new. Boardman [4] created LISTEN to explore mappings
between source code and sound. Similarly to LISTEN, our
tools use a code-to-audio mapping architecture, which is
integrated with our compiler, debugger, and virtual ma-
chine. However, LISTEN focused on facilitating code-to-
audio mappings, not on the design of specific applications,
like blind programming environments. Brown and Hersh-

Figure 1: Snapshot of Sodbeans.

berger [5] augmented algorithm animations in their Zeus
system with “algorithm auralizations.” Their musical au-
ditory displays mapped higher-pitched tones to larger mag-
nitude data in the algorithms being auralized. Brown and
Hershberger claimed that their auditory displays assisted in
the comprehension of the algorithms; however, they did not
carry out any empirical evaluations to test these claims.

Several authors have promoted the specific use of musical
cues as auditory representations of computer source code.
Vickers [17], for example, built a program auralization sys-
tem called CAITLIN, which used musical auditory cues to
represent the execution of computer programs written in
Pascal. In experimental studies, Vickers failed to show that
participants could find more bugs with musical cues, al-
though he claimed to have found that the effectiveness of
the musical cues increased with the cyclomatic complexity
of the source code. Subsequent work has shown that musical
auditory cues are, in fact, difficult to learn [10].

Finally, there is a rich legacy of research into novice pro-
gramming environments (see Kelleher and Pausch [7] for
an excellent overview). Within this large body of work,
some of the themes that resonate with our work are study-
ing programming practices of novices using traditional lan-
guages [14], trying to find“natural”ways of programming [9],
and the use of multimedia and graphics in programming [6].
Our work is similar in the sense that we have conducted
formal studies on our environment as a multimedia novice
environment and have completed formal studies on the effi-
cacy of the words chosen in our programming language [15],
to try to make the language easier to understand.

3. EDUCATIONAL INFRASTRUCTURE
We are working toward a broad research challenge: to cre-

ate a multi-sensory educational infrastructure for the blind
and visually impaired and to implement it widely, so as to
broaden the participation of this community in the comput-
ing discipline. Our preliminary approach toward this chal-
lenge has three primary components: 1) Technology cre-
ation, 2) curriculum development, and 3) infrastructure.

3.1 Technology Creation
We are developing a programming environment for the

blind called Sodbeans, shown in Figure 1. Recognizing the

Figure 2: Manipulatives for teaching programming concepts. (a) representing a variable as a box; (b)
representing a numeric value as a die; (c) representing Boolean value as a light switch; (d) representing a
string value as a string of beads.

difficulty of describing auditory user interfaces in written
prose, a blind user interacts with our environment similarly
to how they would using a screen reader, with the excep-
tion that we “take over” the screen reader, on occasion, to
supplement or replace the information that it provides. For
example, if a user installs Sodbeans on Windows, and that
user has JAWS R©installed, we ask JAWS R©to speak addi-
tional words and phrases designed for our language (e.g.,
information about the execution of a program in the debug-
ger or text editor). If, however, a blind user does not own
a screen reader, Sodbeans has an optional, and free, drop-in
screen reader replacement that starts up automatically.

In contrast to modern screen readers, this “take over” pro-
cess works through what we call a push accessibility model.
For example, when JAWS R©attempts to read the screen, it
pulls information from an accessibility API (if one exists),
for that environment and attempts to aurally present in-
formation to the user. Unfortunately, such APIs are often
poorly maintained by corporations, as they are not partic-
ularly flashy or profitable. In our approach, we integrate
deeply into the listener architecture in NetBeans, allowing us
to push appropriate information to a screen reader, without
reliance upon such APIs. This gives us significant freedom
in how we approach accessibility internally, and has made it
much easier to build tools like talking debuggers.

Sodbeans includes a custom virtual machine, compiler,
and debugger for the Hop programming language. To give
an example of how this works, suppose the Hop auditory
debugger executes the line of code integer a = a + 1. In
this case, the debugger would say“a to 5”(or another value).
Similarly, if the user executes an if statement, like if a <

b then end (the then and end statements serve as a block
in Hop), the debugger would say either “if true” or “if false.”
The auditory cues we are using, and the syntax and se-
mantics in Hop, have been carefully selected and chosen in
formal empirical studies. For example, we use the word re-

peat over for and while, or cycle (see e.g., Sánchez and
Flores [12]), because a recent study showed that the word
repeat represents the concept of iteration significantly bet-
ter than these words [15]. The full documentation for our
language and environment is available in our online wiki at
https://sourceforge.net/apps/trac/sodbeans/.

Our previous work on the design of auditory cues includes
complex statistical analysis and formal studies [15]. We of-
fer here a condensed overview of the results of our empirical
observations related to how we design our auditory cues.
Generally, we think that good auditory cues follow a pat-
tern similar to the following: 1) they are short, 2) they are
“browsable,” and 3) the most important information comes

first. First, auditory users rarely want to listen to lengthy
cues, and we would encourage cue designers to remove ex-
traneous words. Second, users interacting with our auditory
debugger have a tendency to press the debugger keys (e.g.,
step over, step into) rapidly, which means that users often
hear only the first few milliseconds of an auditory cue before
moving on to the next. As such, an auditory cue like “vari-
able a set to 5” is inferior to “a to 5,” as a user browsing with
the former could hear “va, va, va, va, va (the first part of the
word variable),” which has little meaning for browsing. We
suspect such cues make it more difficult for users to answer
Smith et al. [13]’s classic question: “Where am I?”

Finally, sometimes an auditory cue must accommodate
complex information, an example of which is in the use of
“meta-auditory cues.” A meta-auditory cue supplements an-
other cue. For example, NetBeans 6.9 uses visual display in-
formation called editor hints, which try to help a user deter-
mine information about their code (e.g., a yellow lightbulb
on the left gutter of an editor, a red underline for a compiler
error). This kind of information can potentially be embed-
ded into auditory cues as well, but we have observed that
such information can get in the way if presented first. For
example, a cue like “integer a = 5x; compiler error” appears
to be more usable in practice than “compiler error, integer a
= 5x;” as the former is more browsable and gives the most
pertinent information immediately, allowing a user to easily
skip over the meta-auditory cue.

3.2 Computer Programming Curriculum
We are developing a custom computer programming cur-

riculum specifically tailored for the blind and visually-impaired.
In order to provide an empirical foundation for this curricu-
lum, we conducted a field study at the Washington State
School for the Blind in the summer of 2010. While there,
we interviewed two instructors and observed several classes.
Our observations and interviews yielded three key and un-
expected requirements for a programming curriculum to be
used at a school for the blind: 1) introduce concepts, when-
ever possible, through the use of manipulative objects that
students can touch, 2) favor hands-on activities and projects
over lecturing, which is virtually non-existent, and 3) since
students work at varied paces and most teaching is done
one-on-one, provide a rich array of projects and activities
that students can work on at their own pace.

In order to address (1), we have created a suite of manipu-
lative objects to help students learn programming concepts.
For example, Figure 2 presents examples of manipulatives
we have prototyped for teaching variables and variable val-
ues. In order to address (2) and (3), our curriculum stresses

hands-on activities, programming projects, and discussions
over lectures. A typical class might begin with a hands-on
activity involving manipulatives, in order to help students
initially explore the concept being taught. Following that,
students might open up Sodbeans, load some starter code,
and modify it to meet a set of specifications. As students
do this, one or more teachers circulates, helping students as
needed. Students who work at a faster pace could move on
to more advanced projects when they were ready. As stu-
dents finished projects, they would be given the opportunity
to “play” them to the class for feedback and discussion. At
our summer 2010 programming camp (see Section 4), we
piloted this style of curriculum, with encouraging results.

3.3 Infrastructure
Blind and visually impaired students at schools for the

blind generally have few avenues for learning programming.
While schools for the blind have expertise in working with
blind children, expertise in computer programming is rare.
Of our five partner schools for the blind in Washington,
Texas, Indiana, Tennessee, and Massachusetts, none reports
having a state-approved curriculum for blind students to
learn to program, and most teach a curriculum more akin
to basic computer skills (e.g., screen reader or keyboarding
skills). A state-approved curriculum for middle and high
school blind students to learn to program is sorely needed.

We are working with partners to build up an infrastruc-
ture for blind children to learn computing. This includes
obtaining government approval in our partner states, train-
ing teachers from each school on how to program (blind),
and creating a support network for all stakeholders involved.
Our support network includes the use of 1) our commu-
nity driven Sodbeans documentation, 2) mailing lists for
the project for teachers, students, and developers, 3) a Sod-
beans web portal with information on the project and how
to get in touch with our team, and 4) a concerted effort to
foster a community of like-minded individuals interested in
improving the educational infrastructure for the blind. We
encourage any group interested in this population to freely
use our materials and tools or to work with us to establish
an infrastructure for blind students in your local area.

4. EMPIRICAL STUDY
We conducted an empirical study as part of our first an-

nual summer camp, which had the goal of introducing blind
students to computer programming. Our empirical study
associated with this camp had two research goals: RG1) to
obtain insight into student interests and motivations in com-
ing to and participating in a programming workshop, RG2)
to determine whether the students felt confident about their
ability to engage in computer programming (programming
self-efficacy) and to determine whether our workshop might
help improve students’ programming self-efficacy. While the
results in this section should be considered preliminary, we
hope the data will provide some insight into how blind chil-
dren view and consider topics like computer programming.

4.1 Participants
We recruited twelve legally blind students for our first

workshop from Washington and Oregon. Students ranged
from 13 to 18 years old (M=15.75). Of these students, six
reported total blindness, while six reported low visual acu-
ity. Of those with residual vision, the student with the high-

est visual acuity was rated at 20/300, while the lowest was
approximately 20/2200-2400. Students who attended the
conference were required to have previously taken at least
pre-algebra, although in practice all but one had taken alge-
bra I or higher. The student with the highest previous math
experience had taken trigonometry. All students had taken
courses in computing, but two students had taken courses
in web site design and one had taken a course in computer
programming, self reporting some experience in both python
and C.

To help determine the experience level each student had
with various technologies, we asked participants a series
of questions regarding technological usage and experience.
Students self-reported on a 1-7 Likert scale high experi-
ence with screen readers (M=5.58, SD=1.68), low experience
with screen magnifiers (M = 2.833, SD=2.17), moderate ex-
perience with embossers (M = 3.875, SD = 2.02), very high
experience with personal digital assistants like BrailleNotes
designed for the blind (M = 6.33, SD = .99), moderate/high
experience with talking books (M = 4.91, SD = 2.5), and
high experience with the Perkins Brailler (M = 5.67, SD =
2.27). Students also rated themselves in the use of the Inter-
net (M = 5.375, SD = 1.4) word processing applications (M
= 5.33, SD = .89), spreadsheets (M = 2.75 ,SD = 1.49), pre-
sentations (M = 3.58, SD = 1.78), online games (M = 3.125,
SD= 2.05), web design (M = 2, SD = 1.13), and computer
programming (M = 1.875, SD = 1.13).

4.2 Materials and Tasks
We examined whether students with blindness or visual

impairments (N =12) ratings on a measure of self-efficacy
by Askar and Davenport [2] would change after exposure to
a three-day camp in which students used Sodbeans. In ad-
dition, we used a scale by Pintrich et al. [11] to measure stu-
dents’ perceptions of 1) Task Value, 2) Self-Efficacy, 3) Crit-
ical Thinking, 4) Peer Learning, 5) Task Goal Orientation,
6) Performance—Approach, 7) Performance—Avoidance, 8)
Connectedness, and 9) Learning. Students completed all of
these 1- 7 point Likert scales at the beginning and conclusion
of the workshop. For the Askar and Davenport scale, which
was originally designed to test programming self-efficacy in
Java, we adapted it for use in our language, Hop. The adap-
tion was trivial, in that we literally replaced the word “Java”
with the word “Hop” throughout. All surveys have been val-
idated previously using standard factor analysis procedures
(see e.g., Kline [8] for an introduction).

4.3 Procedure
Students arrived at the Washington State School for the

blind on July 13th, 2010 in the afternoon. On arrival, stu-
dents were first welcomed and parents or students signed ap-
propriate informed consent forms. Once forms were signed,
a member of our research group guided a student to a room
where they were interviewed and given our surveys aurally.
On the last day of the workshop, we repeated the procedure,
interviewing and surveying the students a second time.

During our workshop, students participated in a series
of activities. On day one, our teachers taught program-
ming in two 1.5 hour sessions. Students in these sessions
learned some of the syntax of the Hop programming lan-
guage, how to use the auditory debugger, and how to write
code that connects to their screen reader (e.g., a complete
program in Hop to connect to a screen reader would be

say “Hello, World!”). After our two programming sessions
were complete, and students had been given lunch, they were
brought back to listen to one of several guest speakers. Over
the course of the workshop, we brought in 1) an auditory
GPS and tactile maps researcher, 2) mechanical braille re-
searchers, and 3) two professional blind programmers to talk
to the students about obtaining a career in the computing
industry. In sum, we attempted to engage students in pro-
gramming activities, to inspire them to consider program-
ming, and to encourage them that computer programming
is possible as a blind or visually impaired person.

4.4 Results
To begin our analysis, we first used an omnibus repeated

measures analysis of variance (ANOVA) with Trial (i.e., pre-
test scale scores and post-test scale scores) and Scale (Task
Value, Pintrich Self-Efficacy, Critical Thinking, Peer Learn-
ing, Task Goal Orientation, Performance —Approach, Per-
formance —Avoidance, Connectedness, and Learning) as the
two within-subjects factors. This test tells us whether there
existed statistically significant differences in our data set as
a whole. This analysis revealed statistically signifiant dif-
ferences in the main effects for Trial, F (1, 11) = 4.85, p =
.05, η2

p = .306, and Scale, F (8, 88) = 6.66, p = .001, η2
p =

.377. These main effects were qualified by a statistically
significant Trial × Scale interaction, F (8, 88) = 3.24, p =
.003, η2

p = .306. Thus, some of our metrics showed a signifi-
cant change in the beginning of our workshop compared to
the end, but that others did not.

In order to explore differences with respect to specific atti-
tudinal metrics, we performed follow-up repeated-measures
ANOVAs. The means for each metric appear in Table 1,
divided as a function of Trial (i.e., Pre-Workshop, Post-
Workshop). Note that participants’ ratings showed a non-
significant (unreliable) decrease across time for all scales ex-
cept Connectedness, which showed an equally unreliable in-
crease. However, the Performance —Approach and Perfor-
mance —Avoidance scales showed a significant decrease. We
ran a separate repeated measures ANOVA for the the Askar
and Davenport self-efficacy scale, which showed a signifi-
cant positive difference with a large effect size, F (1, 11) =
35.56, p = .001, η2

p = .764. Finally, our results continue
to hold even if a Bonferroni correction is applied, with the
exception of Performance—Approach (it needed to reach
p < .005 using this correction). In English, for those of
our results that showed significant differences, they can be
considered reliable even by very conservative estimates.

4.5 Discussion
Our observations suggest three primary results of partic-

ipation in our workshop: students self reported a 1) signif-
icant increase in the Askar-Davenport self-efficacy scale, 2)
significant decrease in performance—approach (e.g., I want
to do better than other students in my class), and 3) a signif-
icant decrease in performance avoidance (e.g., An important
reason I do my school work is so that I don’t embarrass my-
self). We generally consider these results to be positive, as
they appear to imply that students reported both a gain in
self-confidence with programming and a decrease in worry-
ing about their performance in comparison to their peers.

Notice, however, that our two self-efficacy ratings, both of
which have been validated in the literature did not achieve
the same result. The Pintrich scales shows a small non-

significant drop in self-efficacy, while the Askar and Dav-
enport scale shows a positive, significant, result, with an
effect size that explains nearly 76.4% of the variance in the
sample—an extremely large effect. How should we interpret
such results? We speculate that these metrics are measuring
different attributes. Consider for example, that the ques-
tions in the Pintrich self-efficacy scale are very general (e.g.,
I’m confident I can understand the basic concepts taught
in this course), whereas the Askar self-efficacy scale is more
focused on programming skills (e.g., I could write syntacti-
cally correct Hop statements), which is of more interest in
our case, since we are focused on programming and com-
puter science. We think that future designers of self-efficacy
surveys should focus their attention on the external validity
of such measures, as this would give the community a better
idea of the real-world applicability of each.

5. SUMMARY AND FUTURE WORK
We are engaged in the first large-scale attempt to create a

multi-sensory educational infrastructure for blind and visu-
ally impaired middle high schools students, starting with five
schools for the blind throughout the U.S. We have made two
primary contributions in this work: 1) an environment (Sod-
beans), which includes auditory debuggers, a programming
language (Hop), and a multi-sensory educational curricu-
lum using tactile manipulatives, and 2) an empirical study
of our first summer workshop working with the blind and
visually impaired students at the Washington State School
for the Blind. We are our encouraged that, despite a small
sample size and only a few days with our population, we
were able to show a significant increase in programming self-
efficacy, which, perhaps, could help inspire students from
this community to consider learning more about computing.
Over the next three years, we are expanding our program
to include more schools for the blind, are making regular
upgrades and expansions to our software, and are working
with local and state governments to approve a multi-sensory
curriculum that can be put into practice.

6. ACKNOWLEDGMENTS
We would like to thank the contributors to the Sodbeans

project for their help with creating our technology, including
Melissa Stefik, Neelima Samsani, Andrew Hauck, Susanna
Siebert, Kim Slattery, and Sina Bahram. Sarah Hawkinson
and Jason Neufeld contributed to the design of the program-
ming curriculum. We would also like to thank the Washing-
ton State School for the Blind, especially Dean Stenehjam
and Sherry Haun. This work would also not have been pos-
sible without the extraordinary technical expertise of Tim
Boudreau (Oracle) and Tom Wheeler (A NetBeans Plat-
form expert). This work was funded by the National Science
Foundation under grant no. (CNS-0940521).

7. REFERENCES
[1] American Foundation for the Blind. Interpreting BLS

Employment Data. retrieved august 31, 2010, from
http://www.afb.org/Section.asp?SectionID=

15&SubTopicID=177, 2010.

[2] P. Askar and D. Davenport. An investigation of
factors related to self efficacy for java programming
among engineering students. The Turkish Journal of
Educational Technology, 8(1):26–32, 2009.

Test Example Item pre post F p η2
p

Task Value I think I will be able to use what I learn
in this course in other courses.

5.81 (1.08) 5.54 (1.23) 0.83 .38 0.70

Pintrich - Self-Efficacy I’m confident I can understand the ba-
sic concepts taught in this course.

5.54 (.896) 5.42 (1.15) 0.27 0.61 0.102

Critical Thinking I treat the course material as a starting
point and try to develop my own ideas
about it.

5.18 (1.05) 4.83 (1.29) 1.25 0.29 0.102

Peer Learning When studying for this course, I often
try to explain the material to a class-
mate or a friend.

4.56 (1.35) 4.33 (1.41) 0.53 0.48 0.46

Task Goals I like school work that I’ll learn from
even if I make a lot of mistakes.

5.68 (.876) 5.57 (1.23) 0.46 0.51 0.40

Performance Approach I want to do better than other students
in my class.

4.50 (1.11) 3.57 (1.44) 11.09 0.007 0.502**

Performance Avoidance An important reason I do my school
work is so that I don’t embarrass my-
self.

4.15 (1.30) 3.06 (1.44) 15.85 0.002 0.590**

Connectedness I feel connected to others in this course. 4.86 (1.15) 5.08 (1.22) 0.66 0.44 0.056
Learning I feel that I am encouraged to ask ques-

tions.
5.38 (.486) 5.30 (.689) 0.11 0.75 0.010

Askar - Self-Efficacy I could write syntactically correct Hop
statements.

3.178 (1.10) 4.04 (.884) 35.56 < 0.001 0.764 ***

Table 1: Summary table of the statistical results. All but the last metrics are from the Pintrich scale [11],
with one example question for each factor. The last row gives an example question from the Askar-Davenport
self-efficacy scale [2]. In the columns labeled pre and post, the first number is the mean and the second is
the standard deviation. * = p < .05, ** = p < .01, *** = p < .001

[3] J. P. Bigham, M. B. Aller, J. T. Brudvik, J. O. Leung,
L. A. Yazzolino, and R. E. Ladner. Inspiring blind
high school students to pursue computer science with
instant messaging chatbots. In SIGCSE ’08:
Proceedings of the 39th SIGCSE technical symposium
on Computer science education, pages 449–453, New
York, NY, USA, 2008. ACM.

[4] D. B. Boardman, G. Greene, V. Khandelwal, and
A. P. Mathur. Listen: A tool to investigate the use of
sound for the analysis of program behavior. In
Computer Software and Applications Conference,
1995. COMPSAC 95. Proceedings., Nineteenth Annual
International, pages 184–189, Dallas, TX, 1995.

[5] M. H. Brown and J. Hershberger. Colour and sound in
algorithm animation. In Proceedings of the IEEE
Workshop on Visual Languages, pages 10–17, Los
Alamitos, CA, 1991. IEEE Computer Society Press.

[6] C. D. Hundhausen, S. F. Farley, and J. L. Brown. Can
direct manipulation lower the barriers to computer
programming and promote transfer of training?: An
experimental study. ACM Trans. Comput.-Hum.
Interact., 16(3):1–40, 2009.

[7] C. Kelleher and R. Pausch. Lowering the barriers to
programming: A taxonomy of programming
environments and languages for novice programmers.
ACM Comput. Surv., 37(2):83–137, 2005.

[8] P. Kline. An Easy Guide to Factor Analysis.
Routledge, New York, NY, 2002.

[9] B. A. Myers, A. J. Ko, S. Y. Park, J. Stylos, T. D.
LaToza, and J. Beaton. More natural end-user
software engineering. In WEUSE ’08: Proceedings of
the 4th international workshop on End-user software
engineering, pages 30–34, New York, NY, USA, 2008.
ACM.

[10] D. K. Palladino and B. N. Walker. Learning rates for

auditory menus enhanced with spearcons versus
earcons. In Proceedings of the 13th International
Conference on Auditory Display, pages 274–279,
Montréal, Canada, june 2007.

[11] D. Pintrich, D. Smith, T. Garcia, and W. McKeachie.
A manual for the use of the motivated strategies for
learning questionnaire (technical report no.
ncriptal-91-b-004). Technical report, National Center
for Research to Improve Postsecondary Teaching and
Learning, Ann Arbor, MI, 1991.

[12] J. Sánchez and F. Aguayo. Blind learners
programming through audio. In CHI ’05: CHI ’05
extended abstracts on Human factors in computing
systems, pages 1769–1772, New York, NY, USA, 2005.
ACM.

[13] A. C. Smith, J. S. Cook, J. M. Francioni, A. Hossain,
M. Anwar, and M. F. Rahman. Nonvisual tool for
navigating hierarchical structures. In The Tenth
International ACM SIGACCESS Conference on
Computers and Accessibility, number 77-78, pages
133–139, New York, NY, 2004. ACM Press.

[14] E. Soloway, J. Bonar, and K. Ehrlich. Cognitive
strategies and looping constructs: an empirical study.
Communications of the ACM, 26(11):853–860, 1983.

[15] A. Stefik and E. Gellenbeck. Empirical studies on
programming language stimuli. Software Quality
Journal, pages 1–35, 2010. 10.1007/s11219-010-9106-7.

[16] U.S. Census Bureau. Disability and American
Families: 2000. retrieved may 4, 2009, from http:

//www.census.gov/prod/2005pubs/censr-23.pdf,
july 2005.

[17] P. Vickers and J. L. Alty. When bugs sing. Interacting
with Computers, 14(6):793–819, 2002.

